
Deborah Nolan, University of California, Berkeley
Duncan Temple Lang, University of California, Davis

Data Science in R: A Case
Studies Approach to
Computational Reasoning and
Problem Solving

Copyrighted Material – Taylor & Francis



5
Strategies for Analyzing a 12-Gigabyte Data Set:
Airline Flight Delays

Michael Kane
Yale University

CONTENTS
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.1.1 Computational Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.2 Acquiring the Airline Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.3 Computing with Massive Data: Getting Flight Delay Counts . . . 219

5.3.1 The R Programming Environment . . . . . . . . . . . . . . . . . . . . . . 219
5.3.2 The UNIX Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.3.3 An SQL Database with R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.3.4 The bigmemory Package with R . . . . . . . . . . . . . . . . . . . . . . . 226

5.4 Explorations Using Parallel Computing: The Distribution of
Flight Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
5.4.1 Writing a Parallelizable Loop with foreach . . . . . . . . . . . 230
5.4.2 Using the Split-Apply-Combine Approach for Better

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
5.4.3 Using Split-Apply-Combine to Find the Best Time to

Fly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
5.5 From Exploration to Model: Do Older Planes Suffer Greater

Delays? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

5.1 Introduction

Anyone who has dealt with flight delays at the airport understands the associated inconve-
nience and aggravation. And while we might hope that delays are rare, they are probably
more common than you think. Since October 1987, there have been over 50 million flights
in the United States that failed to depart at their scheduled times. Around 200,000 of those
flights were at least two hours late; some were much later. From these two simple facts
we can surmise that delays are not isolated, rare events; they are routine. Since 1987 the
number of flights per year has steadily increased and as this trend continues we expect to
see more inconvenience, more aggravation, and more time lost.

But why do flight delays occur? Is it simply because there are more flights now than
in previous years? Are delays caused by bad weather? Is enough time being scheduled
for flights? Do single flight delays cause multiple flight delays later in the day? A better
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218 Case Studies in Data Science in R

understanding of the cause of flight delays could allow the airline industry to intelligently
react to issues such as bad weather, providing more flights with fewer delays.

This chapter presents a means for understanding flight delays by analyzing data. In 2009,
the American Statistical Association (ASA) Section on Statistical Computing and Statistical
Graphics released the “Airline on-time performance” data set [17] for their biannual data
exposition. The data set was compiled and organized by Hadley Wickham [16] from the
official releases from the US government’s Bureau of Transportation Research and Innovative
Technology Administration (RITA) Web site (http://www.transtats.bts.gov/DL_
SelectFields.asp?Table_ID=236). The data include commercial flight information
from October 1987 to April 2008 for those carriers with at least 1% of domestic U.S. flights
in a given year. In total, there is information for over 120 million flights, each with 29
variables related to flight time, delay time, departure airport, arrival airport, and so on. In
total, the uncompressed data set is about 12 gigabytes (GB) in size. The data set is so large
that it is difficult to analyze using the standard tools and techniques we have come to rely
upon. As a result, new approaches need to be utilized to understand the structure of these
data. This chapter presents some of these new approaches along with an initial exploration
of airline flight delays.

These new computational approaches are illustrated by taking the reader through the
process of acquiring, exploring, and modeling the airline data set. The first section de-
scribes how to acquire the data. The second section demonstrates the use of 3 different
computing environments to manage and access large data sets: R [7], the UNIX shell, and
SQL databases. The third section offers easy-to-use parallel computing techniques for basic
data exploration. No prior experience with parallel computing is required for this section.
The fourth section provides an approach to answering the question, “Do older planes suffer
greater delays?” This section synthesizes earlier material and demonstrates how to construct
linear models with a potentially massive data set.

5.1.1 Computational Topics

• Big Data strategies.

• Shell commands and pipes.

• Relational databases.

• Parallel computing.

• External data representation.

• The split-apply-combine approach.

Question: What if the reader runs into software questions while trying to run the
sample code?
Answer: Throughout the chapter an attempt has been made to anticipate some of the
implementation issues that will arise as the reader works through the examples. These
issues are presented as questions along with their solutions in boxes like this one.
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5.2 Acquiring the Airline Data Set
The airline on-time performance data can be found at http://stat-
computing.org/dataexpo/2009/the-data.html. The Web page contains the compressed
airline delay data in comma-separated values (CSV) files, organized by year. The page also
provides descriptions of each of the 29 variables associated with each flight. The following
sections will assume that you have downloaded the data files and decompressed each of
them, e.g., using the bunzip2 shell command or potentially a point-and-click graphical
interface.

5.3 Computing with Massive Data: Getting Flight Delay Counts
This section introduces methods for managing and accessing data sets that require more
than a computer’s available RAM (Random Access Memory). At the time this chapter was
written, a 12Gb data set, such as the airline data, presents a computational challenge to
most statisticians because of its sheer size. Admittedly, this may not always be the case.
A future reader may scoff at the idea of having difficulty managing 12 gigabytes of data.
However, it is assumed that there will still be a data set which, by virtue of its size, frustrates
even this well-equipped statistician.

To begin our exploration, let’s consider two simple questions:

• How many flights are in the data set for 1987?

• How many Saturday flights appear in the entire data set, i.e., all years?

The next four subsections show distinct approaches to answering these questions. The
first uses the R programming environment with its native data structures and capabilities.
The second uses the UNIX shell, independent of R or other programming environments.
The third uses R to connect to a database where SQL queries are constructed to answer
the posed questions. The fourth and final approach utilizes some of R’s more advanced
functionality to show how the bigmemory package can be used to explore the entire airline
data set from within the R environment.

5.3.1 The R Programming Environment
The downloaded files provide data for more than 20 years of airline traffic. Each file holds
information for one year and each year contains information for approximately 5 million
flights. The aggregate data set is larger than the amount of RAM on most single computers.
However, to compute the flight count for 1987, we do not need to load the entire data set for
all years into R. We can simply load the 1987 data and compute the number of observations
with

x <- read.csv("1987.csv")
nrow(x)

[1] 1311826

To compute the number of Saturday flights across multiple files, we need to determine
how many values in the column labeled DayOfWeek correspond to Saturday in each of the
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data files. The values in this column have values from 1 through 7, with 1 corresponding to
Monday and 7 for Sunday. The value 6 indicates Saturday. At the same time, we need to be
wary of the size of the data set. We can find the total number of Saturday flights by working
on one file at a time, rather than trying to read all of the files at once. After a single file is
read into a data frame, the number of Saturday flights will be calculated and saved as an
intermediate result. This will be done for each file and, finally, these intermediate counts
will be added together to get the total. This approach is sometimes called the incremental
or chunking approach because a single, manageable “chunk” of data is processed and an
incremental result is stored before aggregation, which yields the final result. Here, the
individual files are natural chunks. In other cases, we divide a large collection of observations
into smaller chunks by just reading/processing chunks of the observations sequentially. For
this airline data, we can compute the total number of Saturday flights with

totalSat <- 0
for (year in 1987:1988) {

x <- read.csv(paste(year, ".csv", sep=’’))
totalSat <- totalSat + sum(x$DayOfWeek == 6)

}
totalSat

[1] 15915382

We could improve the speed of this by specifying a vector of types for each column via
the colClasses parameter. This helps read.csv() (and ultimately read.table()) so that it
doesn’t have to infer the type of each column and potentially have to reallocate memory if
it guesses incorrectly from the first k observations. We could also provide the total number
of observations via nrows if we already knew these, as we did for the 1987 data. Again,
this helps R to allocate memory efficiently by doing it just once for each column/vector of
values.

Instead of the for loop, we could also use

counts <- sapply(sprintf("%d.csv", 1987:1988),
function(f)

sum(read.csv(f)$DayOfWeek == 6))
sum(counts)

Each call to our function reads the appropriate CSV file and then discards it after computing
the number of observations. This is the critical aspect of both approaches, i.e., to avoid
having more than one year’s data frame in memory at any time. The sapply() approach
enables this; the for loop approach actually has two data frames in memory at times (when
and why?). With the sapply() code, we also have the counts for each individual year and
can examine these to see how they are distributed, e.g., does the number of flights in a year
increase over the years? The for loop code is easily modified to create this vector also.

Although these questions were easy to answer, the approach of loading files as needed
can be somewhat limiting. Also, the approach assumes that each data file can be stored
as a data frame. When operations cannot be expressed incrementally/cumulatively, this
approach becomes cumbersome. In the next sections, we will focus on approaches where the
data are managed and accessed from a single source, rather than a set of files, allowing us
to perform more sophisticated analyses.
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Question: Can R objects be destroyed explicitly when we are done with them for better
performance?
Answer: It is possible to force R to remove a variable and run the garbage collector,
freeing all memory associated with that variable. For the vast majority of cases, little
is gained by doing this. Even in cases where this helps, we will not see a dramatic
increase in speed nor a dramatic decrease in memory usage.

A call to the garbage collector may help in special cases where the variables held in
an R session have memory requirements greater than the size of a computer’s available
RAM. When programs require more RAM than what is available, variables may be
“swapped” from RAM to the disk and retrieved when needed. In some cases, even
often-used variables can be swapped to disk. This causes calculations to run slower
because accessing the data from the disk takes much longer than accessing them from
RAM. In a few cases, calling the garbage collector may free unused memory in RAM,
allowing other variables to take their place and reducing the amount of time spent
swapping. It may also reduce memory fragmentation, which can be important.

The function to remove a variable is rm() and the garbage collector is called with
the gc() function. The following code shows how to use these two functions to ensure
that only one data frame exists in RAM at any time when calculating the number of
Saturday flights:

totalSat <- 0
for (year in 1987:1988) {

x <- read.csv(paste(year, ’.csv’, sep=’’))
totalSat <- totalSat + sum(x$DayOfWeek == 6)
rm(x)
gc()

}
totalSat

[1] 15915382

Here we explicitly remove the data frame object and force the garbage collector to run.
R does this implicitly.

5.3.2 The UNIX Shell
This section uses the UNIX shell to answer the previously posed questions. The shell is
a powerful interactive and scripting programming environment with a reasonably simple
language and a rich set of computational resources. Many common operations are provided
as built-in utilities, analogous to functions in R. For example, finding the number of flights
in 1987 can easily be accomplished with the wc utility. wc stands for “word count” which
is not quite what we want but the -l option can be used to count lines rather than words.
To find out how many flights in 1987 were recorded we can simply type:

Shellwc -l 1987.csv
1311827 1987.csv

Again we see that there are 1,311,826 flights that were recorded for 1987. The count from
the shell command indicates one more, but this is because it includes the first (header) line
of the file that lists the names of each column. The utility executes more quickly than the
solution from the previous section and it was expressed with less code. In this subsection we
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will see that the shell is often a very good tool for file manipulation, simple subset selection,
and simple summaries. Furthermore, we can invoke shell commands from R (and other
languages) and read the resulting output back into R, giving us the best of both worlds.

For the rest of this section, we would like to work with a single CSV file, which contains
all of the airline data. This file can be created by appending each of the airline files to a new
file. However, when the files are being concatenated we need to make sure that the header
information, which is given on the first line of each file, appears only once at the beginning
of the new file.

The task of combining each of the CSV files into a single file can be accomplished with
the following commands:

Shell cp 1987.csv AirlineDataAll.csv
for year in {1988..2008}
do
tail -n+2 $year.csv >> AirlineDataAll.csv

done

The resulting file begins with a header line containing the names of each column and then
contains observations for each flight for every year.

This small script illustrates some of the features of the shell. We copied the first file
(1987.csv) to our target file and then appended the contents of the other files to this new
file. We can specify the years to iterate over using a list constructor 1988..2008. This
is analogous to 1988:2008 in R. Then, we can create an argument specifying a file name
by appending .csv to the value of the shell variable year, i.e. $year.csv1. Next, we can
extract the “tail end” of a file with the UNIX tail utility. The -n+2 option specifies that tail
will return all but the first line of the file. Finally, we can use the >> operator to redirect
the output from the tail command so that it is appended to the AirlineDataAll.csv file.

The loop above is not our only option for aggregating information from a file. The
tail command itself can take multiple files as input, outputting the specified lines for each
of the files. For example, if were were interested in creating a single file, with no header
information, for all files from the twentieth century we could simply use the command:

Shell tail -n+2 19*.csv > All1900.csv

Like the last example, this one uses tail to return all but the first line of each of a set of
files. Unlike the last example, we used 19*.csv to specify all files that start with 19 and
end with .csv. This example also made use of the > operator, which overwrites the existing
contents of All1900.csv or creates the file if it does not already exist. This version does not
include the header line at the top of the file. Depending on how we use this file, this may or
may not be important, but it is something we need to know. Now that we have two different
approaches for creating a single file, holding all of the airline data, let’s use the UNIX shell
to find the number of Saturday flights.

Calculating the total number of Saturday flights is trickier than simply counting the
number of lines in a file. The day of the week column is the fourth one in AirlineDataAll.csv.
(Examine the first line of any of the original data files to verify this.) So, we would like to
extract only that column of data values from the file and see how many times 6 appears as
the extracted value (corresponding to Saturday). To do this we’ll need to introduce a few
more UNIX shell utilities and concepts. First, we can use the cut utility, which extracts and
outputs sections from each line of a file. We’ll use it to extract the fourth column of each
line and discard all other columns. This will create a large collection of values ranging from
0 to 6, i.e., the day of the week as a number, each on its own line of output. We can then use

1The shell knows that the variable is named year since a shell variable cannot have a “.” in its name.
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the grep command to match only those lines that contain the character 6. This produces a
collection of lines that is a subset of that produced by the cut command. Finally, we can
use wc, with which we are already familiar, to compute the total count for Saturday flights
by counting the number of lines output by the grep command. We could implement this
with 3 separate commands and output the results of each to intermediate files, e.g.,

Shellcut -d , -f 4 AirlineDataAll.csv > tmp
grep 6 tmp > tmp1
wc -l tmp1
rm tmp tmp1

However, the shell explicitly supports directing the output from one command as input to
another command without (explicitly) using intermediate files. This the purpose of the pipe
operator |. We can write the entire computation to calculate the number of Saturday flights
with the command:

Shellcut -d , -f 4 AirlineDataAll.csv | grep 6 | wc -l
15915382

In this example the cut utility is passed 3 sets of parameters. The first set is -d, which
specifies that the file consists of columns, each of which is delimited (-d) by a comma. The
second set -f 4 specifies that we want to extract the fourth column/field. The third specifies
the name of the file whose contents we want to process. The output of the cut command is
the fourth column of AirlineDataAll.csv. The lines from the cut command are then passed
as lines of input for the grep command, which outputs all the lines that consist of the single
value 6. All 15,915,382 of those rows are passed to wc -l, which counts the number and
prints the result on the console.

We should note that we don’t actually need to create this single file containing the data
for all of the years in order to easily calculate the number of Saturday flights. We can have
cut operate on all of the files with the command cut -d , -f 4 *.csv and then pipe
this to grep and cut as before. However, in the next section we will need and use this single
file containing all of the data.

The UNIX shell capabilities go far beyond the examples shown here. There are many
other utilities included with the shell and users can even create their own utilities using
almost any programming language. As a result, the UNIX shell is often a good choice for
file manipulation and basic summaries. Moreover, we can use these shell commands from R
via the system() and system2() functions.

5.3.3 An SQL Database with R
The R programming environment approach to answering the posed questions is simple for
someone who is familiar with R and its functionality could easily be expanded to do more
than simply tally the number of flights in 1987 or on Saturdays. However, the approach
is somewhat limited in that it assumes each file is relatively small, i.e., the contents can
be held in memory. The UNIX shell approach is also simple, if you are already familiar
with its syntax and computational model. With only a single line we were able to answer
each of the posed questions. Also, the results were returned more quickly than with R.
However, the UNIX shell is not a familiar environment to many statisticians, it has a limited
computational model, and it does not have built-in capabilities for performing statistical
analyses. As a data exploration requires more sophisticated analyses, the corresponding
UNIX scripts may become difficult to write. In practice, we often combine R and the shell
to process data. However, there is an important alternative approach – databases.
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A database provides a general solution for managing a large data set and extracting
meaningful information. Where the previous approaches required that we manually open
files and extract the data of interest each time we process the data, a database provides a
means to ingest and structure the data once and reuse that structure each time we access
the data. A database also provides the Structured Querying Language (SQL) that allows
us to specify and efficiently extract the subset of data of interest with a powerful query.
This approach creates a rich and general way of not only extracting potentially large and
complex subsets of the data but also for computing basic summaries of these subsets. Just
as we can call the shell from R or other languages, we can interact with a database from
R, sending SQL commands to the database and accessing the output as R objects.

The examples in this section use SQLite [1], a lightweight (SQL) database engine. All
interactions with the database are done in R with the RSQLite [2] package. However, these
examples are not specific to SQLite or RSQLite. They will work with any SQL database
engine and corresponding R database connector package.

Question: How do I import the airline delay data into a database?
Answer: We’ll use SQLite as the database engine. You must have SQLite installed on
the machine. The software can be downloaded from the SQLite Web page (http:
//www.sqlite.org/). You must also have the RSQLite package installed on your
machine; it can be found on the CRAN Web site or installed directly with install¬
.packages("RSQLite"). The following instructions are based on those given by
Hadley Wickham on the 2009 Data Expo Web page.

• Inside the directory where the data (CSV files) reside, type the command:

Shell sqlite3 AirlineDelay.sqlite3

• This will create the database and put you into a SQL console/read-eval-print-loop
(REPL), with a prompt sqlite<. Next, create the table and its fields with the
command

SQL CREATE TABLE AirlineDelay (
Year int,
Month int,
DayofMonth int,
DayOfWeek int,
DepTime int,
CRSDepTime int,
ArrTime int,
CRSArrTime int,
UniqueCarrier varchar(5),
FlightNum int,
TailNum varchar(8),
ActualElapsedTime int,
CRSElapsedTime int,
AirTime int,
ArrDelay int,
DepDelay int,
Origin varchar(3),
Dest varchar(3),
Distance int,
TaxiIn int,
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TaxiOut int,
Cancelled int,
CancellationCode varchar(1),
Diverted varchar(1),
CarrierDelay int,
WeatherDelay int,
NASDelay int,
SecurityDelay int,
LateAircraftDelay int );

• Now that the table has been created, import the data from the AirlineDataAll.csv
file. This may take from 10 minutes to over an hour, depending on the speed of
your machine.

SQL.separator ,
.import AirlineDataAll.csv AirlineDelay

To extract all of the flights in 1987, start by opening an R session and connecting to the
database:

library(RSQLite)
delay.con <- dbConnect("SQLite", dbname = "AirlineDelay.sqlite3")

The delay.con variable holds a connection to the database that we can use in subsequent
commands.

Queries are expressed via SQL statements. These statements allow a user to describe the
data of interest and perform operations (such as counting) on them. The SELECT statement
is used to retrieve entries from a database and we can use it to retrieve all data of the flights
from 1987:

delays87 <- dbGetQuery(delay.con,
"SELECT * FROM AirlineDelay WHERE Year=1987")

dbGetQuery() is an R function. It sends an SQL query to the database to be processed there
and dbGetQuery() waits for the result. It does not examine the query as that is written in
a different language (SQL). The query above returns all of the variables in a data frame
for those flights whose value for the year variable is equal to 1987. Now, we can find the
number of 1987 flights in a familiar way:

nrow(delays87)

[1] 1311826

Equivalently, the SQL engine can do the counting for us by utilizing the COUNT() aggre-
gator function:

dbGetQuery(delay.con, "SELECT COUNT(*), Year FROM AirlineDelay
WHERE Year=1987")

[1] 1311826

It is reasonably clear from the examples above that SQL statements are useful as we
perform more complex queries. What if, instead of getting the flight count for a single year,
we want to get the flight count for each year in the database? We can do this using the
GROUP BY clause in SQL. The following query groups all of the rows of the data set by
year and counts the number of rows in each of these groups:
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dbGetQuery(delay.con,
"SELECT COUNT(*), Year FROM AirlineDelay GROUP BY Year")

COUNT(*) Year
1 1311826 1987
2 5202096 1988
3 5041200 1989
4 5270893 1990
5 5076925 1991
6 5092157 1992
7 5070501 1993
8 5180048 1994
9 5327435 1995
10 5351983 1996
11 5411843 1997
12 5384721 1998
13 5527884 1999
14 5683047 2000
15 5967780 2001
16 5271359 2002
17 6488540 2003
18 7129270 2004
19 7140596 2005
20 7141922 2006
21 7453215 2007
22 7009728 2008

To find the number of Saturday flights, we can use a query similar to the previous one,
but rather than grouping by the Year variable, we subset/filter by day of week using the
WHERE clause and perform the calculations in SQL with

dbGetQuery(delay.con,
"SELECT COUNT(*), DayOfWeek FROM AirlineDelay

WHERE DayOfWeek = 6")

COUNT(*) DayOfWeek
1 15915382 6

(Note the use of the single = operator in SQL for testing equality, different from == in R.)
A database provides a useful way of managing large data sets and it supports complex

queries. However, it also comes with challenges. First, it requires the creation of the database
and the importing of data. For the airline data this was not difficult, but it did involve an
extra step. Second, the database approach also requires that the statistician is familiar with
SQL to perform even simple operations. Finally, if an analysis is done in R and the data set
is small, we would use a data.frame or matrix to manage it. When the data set gets big
and we need a new mechanism to handle the larger volume, a database connection cannot
simply be “swapped-in” in place of the familiar R data structures. Significant changes must
be made in the code in order for the analysis to work with a database. Wouldn’t it be nice if
there was an R data structure that behaved like a matrix, but at the same time, managed
large data sets for you?
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5.3.4 The bigmemory Package with R
The R package bigmemory [4] provides matrix-like functionality for data sets that could
be much larger than a computer’s available RAM. This approach to computing with data
provides several advantages when compared with other approaches. First, bigmemory pro-
vides data structures that hold entire, possibly massive, sets of data. As a result, there is
no need to manually load and unload data from files. Second, the data structures provided
by bigmemory are accessed and manipulated in the same way as R’s matrix objects. Our
experience with R has prepared us to work with bigmemory and there is no need to learn
a new language, such as SQL, to access and manipulate data. Third, bigmemory works
with many of R’s standard functions with little or no modification, minimizing the amount
of time required to perform standard manipulations and analyses. Finally, bigmemory was
designed from the ground up for use in parallel and distributed computing environments.
Later on we will see how bigmemory can be used as a basis for implementing scalable
analyses for data that may be much larger than even the airline data set.

The essential data structure provided by bigmemory is the bigmatrix. A bigmatrix
maintains a binary data file on the disk called a backing file that holds all of the values in a
data set. When values from a bigmatrix object are needed by R, a check is performed to
see if they are already in RAM (cached). If they are, then the cached values are returned. If
they are not cached, then they are retrieved from the backing file, cached, and then returned.
These caching operations reduce the amount of time needed to access and manipulate the
data across separate calls, and they are transparent to the statistician. A bigmatrix
object is designed to be a convenient and intuitive tool for computing with massive data.
When using these data structures the emphasis is on the exploration, not the underlying
technology.

As mentioned before, bigmatrix looks like a standard R matrix. It has rows and
columns, and subsets of the elements of a bigmatrix can be read and set using the
standard subsetting operator ([]). Like R’s matrix, a big.matrix object requires that
all elements are of the same type. However, this leads to a challenge with the airline data
set since it has columns that are character type as well as numeric. Before we can read the
airline data into a bigmatrix, some preprocessing must be done so that all the columns
and their values are numeric. For columns with character data, this preprocessing step
creates a mapping between a unique numeric value and the character value for each row,
much like R’s factor data type. Preprocessing is left as an exercise for the reader or a
preprocessing script is available from the author of this chapter. For the rest of the chapter,
we will assume that the preprocessing step has been performed and that the preprocessed
file has been named airline.csv.

A user can create a bigmatrix from a CSV file with the function read.big.matrix()
that is similar to R’s read.csv() function, e.g.,

x <- read.big.matrix("airline.csv", header = TRUE,
backingfile = "airline.bin",
descriptorfile = "airline.desc",
type = "integer", extraCols = "age")

The extraCols and descriptorfile parameters used in the example will be explained later.
As we said, a big.matrix object x acts like a regular R matrix and commands such

as dim() and head() give the appropriate results, e.g.,

dim(x) # How big is x?
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[1] 123534969 30

x[1:6,1:6] # Show the first 6 rows and columns.

Year Month DayofMonth DayOfWeek DepTime CRSDepTime
[1,] 1987 10 14 3 741 730
[2,] 1987 10 15 4 729 730
[3,] 1987 10 17 6 741 730
[4,] 1987 10 18 7 729 730
[5,] 1987 10 19 1 749 730
[6,] 1987 10 21 3 728 730

At this point, we can compute the number of flights in 1987 in a familiar way:

sum(x[, "Year"] == 1987)

[1] 1311826

Similarly, the number of Saturday flights can be found using the command

sum(x[,"DayOfWeek"] == 6)

[1] 15915382

Depending on your hardware, the read.big.matrix() function could have taken over 30
minutes to complete. The prospect of waiting to load these data in future R sessions is
very unappealing. Wouldn’t it be nice if subsequent sessions could create a bigmatrix by
simply attaching to the existing backing file and not have to wait to create the big matrix
object? Fortunately, we can do this by using a descriptor file. This file contains all of the
information needed to create a new bigmatrix from an available backing file. A new
bigmatrix, named y, which uses the airline backing file, can be rapidly created with the
attach.big.matrix() function:

y <- attach.big.matrix("airline.desc")

It is important to realize that the variables x and y now point to the same data set. This
means that changes made in x will be reflected in y. To illustrate this point, let’s create a
new bigmatrix object which has 3 rows, 3 columns, and holds zero integer values.

foo <- big.matrix(nrow = 3, ncol = 3, type = "integer", init = 0)

We can look at the contents of foo by typing:

foo

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0
[3,] 0 0 0

Now, let’s create another variable bar:
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bar <- foo

If foo and bar were R matrices, then bar would be assigned a copy of foo. However, since
foo is a bigmatrix object, the assignment causes bar to point to the same data as foo.
This is easily verified with

bar[1,1] <- 1
foo

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 0 0
[3,] 0 0 0

The fact that big.matrix objects can reference the same data can be extremely useful.
By preventing R from making copies of a potentially large data set, calculations can be
made more efficient, both in terms of memory usage and computing time. However, this
functionality comes at a price. Because they do not follow the same copy semantics as R
matrices, a statistician may have to make small modifications so that bigmatrix objects
work correctly with existing R code.

Q.1 Using the UNIX shell, create the AirlineDataAll.csv file without using a loop.

Q.2 Write a preprocessing script (using the shell, R, Python or any tools) to create a file
that can be used with bigmemory, i.e., convert the non-numeric values to numeric
values in some well-defined manner.

Q.3 How many flights were there for each day of the week?

Q.4 For each year, how many flights were there for each day of the week?

Q.5 For each year, how many of the tail codes are listed as NA?

Q.6 Which year had the greatest proportion of late flights? Is this result significant?

Q.7 Which flight day is best for minimizing departure delays? Which time of day?

5.4 Explorations Using Parallel Computing: The Distribution of
Flight Delays

Many calculations executing quickly on small data sets take proportionally longer on larger
ones. When execution time becomes an issue, parallel computing can be used to reduce the
time required by computationally intensive calculations. R offers several different packages
for executing code in parallel, each relying on different underlying technologies. Because
these parallel mechanisms, or backends, are different, their configuration and use are also
slightly different. As a result, it has traditionally been cumbersome to migrate sequential
code to a parallel platform, and even after this migration was successful, the resulting
parallel code was usually specific to a single parallel backend. The foreach package [11]
addresses this issue by providing one approach to standardizing the syntax for describing
parallel calculations. The foreach package decouples the function calls needed to run
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code in parallel from the underlying technology executing the code. This approach allows
a statistician to write and debug sequential code and then run it in parallel by registering
an appropriate package such as multicore [14], snow [13] or nws [12]. Using the foreach
package, R code can run sequentially on a single machine, in parallel on a single machine,
or in parallel on a cluster of machines with no (or very minimal) code changes.

Although parallel computing can dramatically decrease execution time for many calcu-
lations, you should be aware that there are limitations. There are even cases where par-
allelization can increase execution time, not decrease it. When deciding whether or not
to parallelize code there are a few things to keep in mind. First, there is some additional
overhead associated with executing any parallel code (e.g., launching the worker processes,
copying data to them, collecting the results). As a result, code should only be parallelized
when each of the tasks run in parallel takes a sufficient amount of time to compute so that
this overhead becomes a negligible part of the overall computational time. Second, you can
expect a speed-up that is at most linear in the number of processor cores. If a snippet of
code takes t seconds to execute on a single core and it is run in parallel on two cores, it
will take more than t/2 seconds to execute. Speed gains often diminish as the number of
cores being utilized increases. Finally, each R object in the main R session that is used
in the parallel computations is typically copied to each of the parallel processes. If these
copies cannot all be stored in RAM, then there will be significant overhead as the operating
system uses the hard drive to manage these copied data structures.

Now that you are aware of the issues with parallel computing, we are going to explore
the process of creating parallel code. The next subsection discusses the process writing code
that can be executed in parallel. The following section presents an approach for optimizing
potentially parallel code called split-apply-combine. The third and final subsection explores
the use of the foreach and bigmemory packages to perform more sophisticated analyses
with the airline data set in parallel.

5.4.1 Writing a Parallelizable Loop with foreach

Let’s go back to the question from the last section’s exercises, “For each day of the week,
how many flights are recorded?” To compute the solution, we could use a big.matrix
object to store the airline data and a for loop to iterate over each day, finding the number
of flights, e.g.,

x <- attach.big.matrix("airline.desc")
dayCount = integer(7)
for (i in 1:7)
dayCount[i] <- sum(x[,"DayOfWeek"] == i)

dayCount

[1] 18136111 18061938 18103222 18083800 18091338
[5] 15915382 17143178

You may notice that computing the number of Monday flights is completely independent of
computing the number of Tuesday flights. Wouldn’t it be nice if we could take advantage of
the multiple cores in a machine to calculate day of the week counts at the same time? Well,
we can; and loops like this, where each iteration is independent of other iterations, are so
easy to execute in parallel that they are sometimes called “embarrassingly parallel.”

It is important to understand that not all loops are embarrassingly parallel and some
calculations must be run sequentially. A single Markov chain simulation is generally impos-
sible to run in parallel. As an example, consider the following random walk on the integers
with an initial state of zero, implemented with
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state <- numeric(10)
for (i in 2:10)
state[i] <- state[i - 1] + sample( c(-1, 1), 1 )

state

[1] 0 1 0 1 2 3 2 3 4 5 6

For the value of state at time i to be calculated, the value of state at time i - 1 must be
known. Information must be shared across loop iterations to perform the simulation, and
as a result, iterations of the loop must be computed sequentially, not in parallel.

Getting back to the question at hand, let’s start with a sequential solution to the prob-
lem of tallying flights in a given day. Unlike the previous implementation, let’s use the
foreach [11] package. This package allows us to define embarrassingly parallel loops ei-
ther sequentially or in parallel. The new code uses the foreach() function and the previously
created big.matrix object:

library(foreach)
dayCount <- foreach(i = 1:7, .combine=c) %do% {

sum(x[,"DayOfWeek"] == i)
}

Like the previous code example, loop iterations are indexed by an integer i going from 1
to 7. In each iteration of the loop, the number of times DayOfWeek is identical to the loop
counter is calculated. Unlike the previous example, the calculated value is simply returned,
not appended to the dayCount variable. The .combine parameter tells foreach() to combine
the results from each iteration of the loop into a vector, which is returned and stored in
the dayCount variable. You should also notice that after the foreach() statement, there is a
%do% operator that tells the function to perform each loop iteration sequentially. (We’ll use
%dopar% later to perform the loop in parallel.) The result of this example and the previous
one are the same; dayCount holds the number of flights recorded for each day of the week
in a vector of numeric values.

Both the for and foreach() loop in this subsection process the entire DayOfWeek
column 7 times to extract the number of delays for each day. For small data sets, each of
these passes happen very quickly and the corresponding delay may go unnoticed. However,
as the number of rows in the data set grows, each extraction requires more time, eventually
delaying the exploration. This delay would be even more pronounced if we were finding the
delay count for each day of the month. A day of the month count would require 31 separate
passes through the data set and would take more than 4 times longer than finding the delay
count for the day of the week. Wouldn’t it be nice if we could perform these calculations
while only passing through the data once to get the rows of interest and once to perform the
calculation? In the next subsection, we will explore a different approach that only requires
a single pass through the data offering significant performance gains.

5.4.2 Using the Split-Apply-Combine Approach for Better Performance
The task of counting the number of delays by the day of the week can be recast into
separating all of the observations into 7 groups, one for each day of the week and then
counting the number in each group. We can do this generally for records using the split()
function, which passes through the data once. The split() function returns a named list.
The names of the list, in our case, correspond to the day of the week. For each of day of
the week, the list contains a vector of indices corresponding to the rows for that day:
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# Split the rows of x by days of the week.
dow <- split(1:nrow(x), x[,"DayOfWeek"])

# Rename the names of dow
names(dow) <- c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")

# Get the first 6 rows corresponding to Monday flights.
dow$Mon[1:6]

[1] 5 11 19 26 32 38

Now that we have the row numbers for each day of the week, we can write a foreach()
loop to get the counts for each day. Since all of the information to get the delay counts is
contained in the dow variable, we don’t need to include the data set in the calculation.

dayCount <- foreach(dayInds = dow, .combine = c) %do% {
length(dayInds)

}
dayCount

[1] 18136111 18061938 18103222 18083800 18091338
[6] 15915382 17143178

There are many calculations, like this, that can be accomplished by grouping data (called
the split), performing a single calculation on each group (the apply), and returning the
results in a specified format (the combine). The term “split-apply-combine” was coined
by Hadley Wickham [18] but the approach has been available in a number of different
computing environments for some time under different names.

There are several advantages to the split-apply-combine approach over a traditional
for loop. First, as already mentioned, split-apply-combine is computationally efficient. It
only requires two passes through the data: one to create the groups and one to perform
the calculation. Admittedly, storing the groups from the split step requires extra memory.
However, this overhead is usually manageable. In contrast, a for loop makes a costly pass
through the data for each group, which can be significant if the number of groups is large.
Second, calculations that can be expressed within the split-apply-combine framework are
guaranteed to be embarrassingly parallel. Because the split defines groups on the rows
of a data set, calculations for each group are guaranteed to be independent. When the
calculation being applied to a group is intensive, as in the next section, parallel computing
can dramatically reduce execution time.

5.4.3 Using Split-Apply-Combine to Find the Best Time to Fly
Now that we have gained some familiarity with foreach() and parallel computing, let’s move
on to the more difficult question, “Which is the best hour of the day to fly to minimize
departure delays?” This was originally posed as one of the ASA Data Expo challenges and
the solution lends itself to the split-apply-combine approach.

To answer this question, we need to start by determining what is meant by the “best”
hour. About half of the flights in the data set do not have departure delays. Of the flights
with departure delays, most are only a few minutes late. Is the best hour the one minimizing
the chance of any delay? Is the best hour the one that tends to have fewer long delays?
In this situation, we have all of the flights, not a sample. Accordingly, we do not need
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to perform hypothesis tests that take sampling variability of the statistics into account.
Instead, we can examine the population distributions directly from the data.

Let’s turn our attention to the worst delays. The question can be refined by asking, “How
long were the longest 1% of flight delays for a given hour?” A frequent flyer might interpret
this as, “How long could my longest delay be for 99% of my flights.” Along with finding the
longest 1% of departure delays, let’s find the longest 0.1%, 0.01%, 0.001%. That is, let’s find
the quantile values for probabilities of 0.9, 0.99, 0.999, and 0.9999 in the departure delays.

To find the quantiles, we will start by splitting the data based on the hour of departure
for each flight. Since there is no column that gives us the hour of departure for a given flight
we will need to extract this information from the CRSDepTime column that encodes times,
such as 8:30 AM as 830. The hour of departure can be calculated with

# Divide CRSDepTime by 100 and take the floor to
# get the departure hour.

depHours <- floor(x[,"CRSDepTime"]/100)
# Set the departure hours listed as 24 to 0.

depHours[depHours==24] <- 0

Now that we have a vector holding the departure hours for each flight, we can split on
it and calculate the desired quantiles:

# Split on the hours.
hourInds <- split(1:length(depHours), depHours)

# Create a variable to hold the quantile probabilities.
myProbs <- c(0.9, 0.99, 0.999, 0.9999)

# Use foreach to find the quantiles for each hour.
delayQuantiles <- foreach( hour = hourInds, .combine=cbind) %do% {

require(bigmemory)
x <- attach.big.matrix("airline.desc")
quantile(x[hour, "DepDelay"], myProbs,

na.rm = TRUE)
}

# Clean up the column names.
colnames(delayQuantiles) <- names(hourInds)

You may have noticed that for each iteration of the foreach() loop, we are ensuring
that the bigmemory package is loaded and we are are calling attach.big.matrix(). These
steps are not required when the loop is run sequentially but we will see later that they are
required when the loop is run in parallel.

Now that we can calculate the delay quantiles sequentially, let’s parallelize the code
so that it runs faster. We’ll start by registering a parallel backend. When this chapter
was written, there were 5 different parallel packages that were compatible with foreach:
doMC [8], doMPI [15], doRedis [5], doSMP [9], and doSNOW [10]. Each of these packages
allow R users to exploit distinct parallel programming technologies. Packages like doMC
and doSMP allow R users to take advantage of multiple cores on single machine. The other
packages allow R users to create parallel programs for a single machine or even a cluster
of machines. The doRedis package even supports programming in the “cloud.” For this
section, we are going to use the doSNOW package to perform parallel calculations on a single
machine using multiple cores.
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To run the foreach() loop in parallel, we need to determine the number of parallel R
sessions that will be used to perform the calculation. In general, it is a good idea to use the
total number of cores on the machine minus one. This allows the extra core to deal with
some of the overhead associated with the parallel calculations. After the parallel workers
are instantiated, they are registered with foreach. This step informs foreach how the
iterations of the loop will be parallelized. Then, we change %do% clause in the foreach()
loop to %dopar% in order to let the foreach() function know that code should be executed
in parallel. We do all of this with

# Load the parallel package so we can find
# how many cores are on the machine.

library(parallel)

# Load our parallel backend.
library(doSNOW)

# Use the total number of cores on the
# machine minus one.

numParallelCores <- max(1, detectCores()-1)

# Create the parallel processes.
cl <- makeCluster(rep("localhost", numParallelCores),

type = "SOCK")

# Register the parallel processes with foreach.
registerDoSNOW(cl)

# Run the foreach loop again, this time
# with %dopar% so that it is executed in parallel.

delayQuantiles <- foreach(hour=hourInds, .combine=cbind) %dopar% {
require(bigmemory)
x <- attach.big.matrix("airline.desc")
quantile(x[hour, "DepDelay"], myProbs, na.rm=TRUE)

}
colnames(delayQuantiles) <- names(hourInds)
stopCluster(cl)

When you run this code you should notice that it runs significantly faster than the
sequential code (depending on how many cores you have available). By using foreach(), we
have reduced the effort needed to migrate between sequential and parallel code.

It is important to understand that when a foreach() loop is run in parallel each iteration
of the loop is run in a separate R session in another process, sometimes referred to as a
worker process. Variables used inside the loop are copied from the master R session to each
of the worker sessions. This presents two challenges when computing with a big.matrix in
parallel. First, the bigmemory package is not automatically loaded in each of the worker
sessions when they are started. However, this issue is easily remedied by requiring that
the bigmemory package is loaded in the worker, before a calculation begins. Second, a
big.matrix object holds a pointer to a location in memory that is only valid in the
process where the pointer is created. As a result, the mechanism foreach() uses to copy
variables from master to worker sessions doesn’t work for a big.matrix(). This issue is also
easily remedied by using the attach.big.matrix() function in the worker process after the
bigmemory package has been loaded and before the calculation.
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Now that we have efficiently calculated the airline quantile delays we can visualize these
delays using ggplot2:

library(ggplot2)
dq <- melt(delayQuantiles)
names(dq) <- c("percentile", "hour", "delay")
qplot(hour, delay, data = dq, color = percentile, geom = "line")

Figure 5.1: Hourly Delay Quantiles. The airline delay quantiles (in minutes) for each hour
of the day.

Figure 5.1 shows the delays by hour. The graph indicates that delays are worse in the
early hours of the morning, for these quantiles. These may correspond to red-eye flights that
are delayed arriving at their destination and therefore cause delays for subsequent flights.
The graph also indicates that flights leaving between 6:00 AM and 4:00 PM see the fewest
lengthy delays.

For the examples in this section, a big.matrix object was used to hold the airline data
because the data set is too large on many machines for a native R matrix or data.frame
object. A big.matrix object manages a large data set by caching needed data and leaving
the rest on disk. It has the advantage of using less RAM than what would be needed to hold
the entire data set, but this isn’t its only advantage. When performing parallel calculations,
variables are copied from the master R session to worker R sessions. If a variable uses a
large amount of memory, then a worker R session incurs the overhead of waiting for these
variables to be copied. Also, each worker must hold a copy of the variable potentially using
up all of the available memory on one machine. A big.matrix object does not suffer from
either of these problems. Descriptors are small and are quickly copied from one process to
another. Also, a big.matrix object in each worker session is not a copy of the original.
Each is a reference to the same data used by the master. These two qualities mean that
bigmemory provides an efficient solution to computing in parallel with massive data and
that we are now able to explore and visualize these data sets more easily than before. The
bigmemory approach can be used for more than exploration and in the next section we
will use bigmemory to model data and provide techniques to help answer the question “Do
older planes suffer greater delays?”
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Q.8 Which is the best day of the week to fly?

Q.9 Which is the best day of the month to fly?

Q.10 Are flights being given more time to reach their destination for later years?

Q.11 Which departure and arrival airport combination is associated with the worst delays?

5.5 From Exploration to Model: Do Older Planes Suffer Greater
Delays?

Another question posed by the 2009 Data Expo was “Do older planes suffer greater delays?”
The fact that the airline data does not give a plane’s age presents a difficulty in answering
this. We might search for this information on the Web to see if we can find auxiliary
sources of data to determine the age of each plane given its uniquely identifying tail number.
However, in the absence of this auxiliary data, we can use the current data to approximate
it. The year and month of each flight are available, and we have each plane’s unique tail
code. For each flight, we can get the number of months the plane has been used since the
first time it appears in the data set. This approach does have an issue with censoring: if a
plane appears in the first year and month of the data set, we don’t know if the plane started
service in that month (January, 1988) or sometime before then. Nonetheless, this approach
is reasonable given the limited data we have.

How do we calculate the age of a plane? Using the big.matrix object from before,
which holds the entire data set, we can quickly find that there are 13,536 unique tail codes
that appear in the data set:

length(unique(x[,"TailNum"]))

[1] 13536

The task of finding the first time a tail code appears (in months A.D.) is independent across
tail codes, so we’ll split the data by the TailNum variable and use foreach() to find this
value for each TailNum group:

planeStart <- foreach(tailInds = tailSplit, .combine=c) %dopar% {
require(bigmemory)
x <- attach.big.matrix("airline.desc")

# Get the first year this tail code appears in the
# data set.

minYear <- min(x[tailInds, "Year"], na.rm = TRUE)

# Get the rows that have the same year.
minYearTailInds <-

tailInds[which(x[tailInds, "Year"] == minYear)]

# The first month this tail code appears is the
# minimum month for rows indexed by minYearTailInds.

minMonth <- min(x[minYearTailInds, "Month"], na.rm = TRUE)
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# Return the first time the tail code appears
# in months A.D.

12*minYear + minMonth
}

Remember the extraCols = "age" argument that was specified when the bigmatrix
object was created in Section 5.3.4 (page 227)? This argument created an extra column
named age in the bigmatrix object and this can be assigned a value with the single R
command

x[,"age"] <- x[,"Year"] * 12 + x[,"Month"] -
planeStart[x[,"TailNum"]]

Now that we have created a variable holding the age of a plane, what should we do with
it? One approach to answering the posed question is to create a linear model with arrival
delay modeled as a linear function of airplane age to see if there is an association between
older planes and larger arrival delays. While the lm() function will not, in general, be able
to handle this much data, there is a function, called biglm() in the biglm [6] package,
designed to perform regressions in this setting. The biglm() function works on subsets of
rows at a time so that a linear model can be updated incrementally with new rows of data.
A wrapper for this function has been implemented in the biganalytics [3] package for
creating linear models with bigmatrix objects. Regressing arrival delay as a function of
age can be implemented as

library(biganalytics)
blm <- biglm.big.matrix( ArrDelay ~ age, data = x )

and calling summary(blm) gives a summary similar to that of an lm object:

Large data regression model: biglm(formula = formula,
data = data, ...)

Sample size = 84216580
Coef (95% CI) SE p

(Intercept) 6.8339 6.8229 6.8448 0.0055 0
age 0.0127 0.0126 0.0129 0.0001 0

The model indicates that older planes are associated with large delays. However, the effect
is very small and there may also be effects that are not accounted for in the model. At this
point though you have the tools and techniques to begin evaluating these issues, as well as
pursuing your own exploration and analysis for the airline data as well as other massive
data sets.

Q.12 One of the examples in this section creates a vector, named planeStart, which gives
the first month in which a plane with a given tail code appears in the data set. Estimate
the amount of time the loop to create this vector will take to run sequentially? and in
parallel?

Q.13 How many of the planes ages are censored?

Q.14 How much do weather delays contribute to arrival delay?

Q.15 Along with age, which other variables in the airline delay data set contribute to
arrival delays?
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