

Building Scalable Big Data Infrastructure Using Open Source Software

Sam William sampd@stumbleupon.

com

What is StumbleUpon?

The best way to discover new and interesting things from across the Web.

How StumbleUpon works

1. Register

Join for Free

2. Tell us your interests

3. Start Stumbling and rating web pages

We use your interests and behavior to recommend new content for you!

StumbleUpon

By the Numbers

REGISTERED USERS

+80,000

75

AVERAGE STUMBLES

300

PERCENTAGE OF MOBILE STUMBLES

40 %

TIME SPENT STUMBLING

HOURS A MONTH

OFFICES

San Francisco New York SIZE OF INDEX

+100,000,000 WEB PAGES

The Data Challenge

- 1 Data collection
- 2 Real time metrics
- 3 Batch processing / ETL
- 4 Data warehousing & ad-hoc analysis
- 5 Business intelligence & Reporting

Challenges in data collection

Different services deployed of different tech stacks

- Add minimal latency to the production services
- Application DBs for Analytics / batch processing
 - From HBase & MySQL

Data Processing and Warehousing

Challenges/Requirements:

- Scale over 100 TBs of data
- •End product works with easy querying tools/languages
- •Reliable and Scalable α powers analytics and internal reporting.

Real-time analytics and metrics

- Atomic counters
- Tracking product launches
- Monitoring the health of the site
- Latency live metrics makes sense
- A/B tests

Open Source at SU

Data Collection at SU

Activity Streams and Logs

All messages are Protocol Buffers

- √ Fast and Efficient
- ✓ Multiple Language Bindings (Java/ C++ / PHP)
- ✓ Compact
- √ Very well documented
- ✓ Extensible

Apache Kafka

- Distributed pub-sub system
- Developed @ LinkedIn
- Offers message persistence
- Very high throughput
 - ~300K messages/sec
- Horizontally scalable
- Multiple subscribers for topics.
 - Easy to rewind

Kafka

- Near real time process can be taken offline and done at the consumer level
- Semantic partitioning through topics
- Partitions for parallel consumption
- High-level consumer API using ZK
- Simple to deploy- only requires Zookeeper

Kafka At SU

- 4 Broker nodes with RAID10 disks
- 25 topics
- Peak of 3500 msg/s
- 350 bytes avg. message size
- 30 days of data retention

Sutro

- Scala/Finagle
- Generic Kafka message producer
- Deployed on all prod servers
- Local http daemon
- Publishes to Kafka asynchronously
- Snowflake to generate unique Ids

Sutro - Kafka

Application Data for Analytics & Batch Processing

HBase

- HBase inter-cluster replication (from production to batch cluster)
- Near real-time sync on batch cluster
- Readily available in Hive for analysis

MySQL

- MySQL replication to Batch
 DB Servers
- Sqoop incremental data transfer to HDFS
- HDFS flat files mapped to Hive tables & made available for analysis

Real-time metrics

- 1. HBase Atomic Counters
- 2. Asynchbase Coalesced counter inc++
- 3. OpenTSDB (developed at SU)
 - A distributed time-series DB on HBase
 - Collects over 2 Billion data points a day
 - Plotting time series graphs
 - Tagged data points

Real-time counters

Kafka Consumer framework aka Postie

- Distributed system for consuming messages
- Scala/Akka -on top of Kafka's consumer API
- Generic consumer understands protobuf
- Predefined sinks HBase / HDFS (Text/Binary) / Redis
- Consumers configured with configuration files
- Distributed / uses ZK to co-ordinate
- Extensible

Postie

Akka

- Building concurrent applications made easy !!
- The distributed nodes are behind Remote Actors
- Load balancing through custom Routers
- The predefined sink and services are accessed through local actors
- Fault-tolerance through actor monitoring

Postie

Batch processing / ETL

GOAL: Create simplified data-sets from complex data

Create highly denormalized data sets for faster querying

Batch processing / ETL

Output structured data for specific analysis

Power the reporting DB with daily stats

Our favourite ETL tools:

Pig

- Optional Schema
- Work on byte arrays
- Many simple operations can be done without UDFs
- Developing UDFs is simple (understand Bags/Tuples)
- Concise scripts compared to the M/R equivalents

Scalding

- Functional programming in Scala over Hadoop
- Built on top of Cascading
- Operating over tuples is like operating over collections in Scala
- No UDFs .. Your entire program is in a full-fledged general purpose language

Warehouse - Hive

Uses SQL-like querying language

All Analysts and Data Scientists versed in SQL

Supports Hadoop Streaming (Python/R)

UDFs and Serdes make it highly extensible

Supports partitioning with many table properties configurable at the partition level

Hive at StumbleUpon

HBaseSerde

- Reads binary data from HBase
- Parses composite binary values into multiple columns in Hive (mainly on key)

ProtobufSerde

- For creating Hive tables on top of binary protobuf files stored in HDFS
- Serde uses Java reflection to parse and project columns

Data Infrastructure at SU

Data Consumption

End Users of Data

Business Analytics / Data Scientists

- Feature-rich set of data to work on
- Enriched/Denormalized tables reduce JOINs, simplifies and speeds queries – shortening path to analysis.
- R: our favorite tool for analysis post Hadoop/Hive.

Cross-device skip rate prediction

Recommendation platform

- URL score pipeline
 - M/R and Hive on Oozie
 - Filter / Classify into buckets
 - Score / Loop
 - Load ES/HBase index
- Keyword generation pipeline
 - Parse URL data
 - Generate Tag mappings

URL score pipeline

Advertisement Platform

Billing Service

- RT Kafka consumer
- Calculates skips
- Bills customers

Audience Estimation tool

- Pre-crunched data into multiple dimensions
- A UI tool for Advertisers to estimate target audience

Sales team tools

 Built with PHP leveraging Hive or pre-crunched ETL data in HBase

More stuff on the pipeline

- Storm from Twitter
 - Scope for lot more real time analytics.
 - Very high throughput and extensible
 - Applications in JVM language
- BI tools
 - Our current BI tools / dashboards are minimal
 - Google charts powered by our reporting DB (HBase primarily).

Open Source FTW!!

- Actively developed and maintained
- Community support
- Built with web-scale in mind
- Distributed systems Easy with Akka/ZK/Finagle
- Inexpensive
- Only one major catch !!
 - Hire and retain good engineers !!

Thank You!

Questions

?

